a2 United States Patent

Neubacher et al.

US009274746B2

(10) Patent No.: US 9,274,746 B2
(45) Date of Patent: Mar. 1, 2016

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

LATENCY HIDING TECHNIQUES FOR
MULTI-MODAL USER INTERFACES

Inventors: Andreas Neubacher, Vienna (AT);
Miklés Papai, Budapest (HU); Attila
Muszta, Budapest (HU); Herwig Hile,
Traiskirchen (AT); Christina Drexel,
Vienna (AT)

Assignee: Nuance Communications, Inc.,
Burlington, MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1127 days.

Appl. No.: 13/030,161
Filed: Feb. 18,2011

Prior Publication Data

US 2012/0216134 Al Aug. 23,2012

Int. Cl1.

G10L 15/26 (2006.01)

GO6F 3/16 (2006.01)

GO6F 3/038 (2013.01)

U.S. CL

CPC ... GO6F 3/167 (2013.01); GOGF 3/038

(2013.01); GOGF 3/16 (2013.01); G10L 15/26
(2013.01); GIOL 15/265 (2013.01)

(58) Field of Classification Search
CPC ... G10L 14/26; G10L 15/285; GOG6F 3/16;
GOG6F 3/167; GOG6F 3/038
USPC ottt 715/728
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,292,857 B1* 9/2001 Sidoroffetal. 710/54
6,538,667 B1* 3/2003 Duursma et al. 715/740
2003/0225825 Al* 12/2003 Healey etal. 709/203
2009/0216531 Al* 82009 Yanagihara 704/235

* cited by examiner

Primary Examiner — Aaron Lowenberger
(74) Attorney, Agent, or Firm — Wolf, Greenfield & Sacks,
P.C.

(57) ABSTRACT

A multi-modal user interface is described that hides response
latency delays. A graphical user interface (GUI) supports
different user input modalities including low delay inputs
which respond to user inputs without significant delay, and
high latency inputs which have a significant response latency
after receiving a user input before providing a corresponding
completed response. The GUI accepts user inputs in a
sequence of mixed input modalities independently of
response latencies without waiting for responses to high
latency inputs, and responds to each user input in the
sequence as if each preceding user input in the sequence had
been performed without response latencies.

18 Claims, 4 Drawing Sheets

US 9,274,746 B2

Sheet 1 of 4

Mar. 1, 2016

U.S. Patent

5
&%
bt

2

Fig. 1

US 9,274,746 B2

Sheet 2 of 4

Mar. 1, 2016

U.S. Patent

¥ AN

Z "bid4

508
£ LNBWITS

r 3

¥

AN IV HOH

& INAWETH

b ANANITS

&

RERT. 101!
AONZ LY HOIH

AN
AYTE0 MO

450

US 9,274,746 B2

Sheet 3 of 4

Mar. 1, 2016

U.S. Patent

£ brd

TOE HIDVYNYIR ATNILYY

P ANZEWEE

i
£ ANIWITE

¥

HEYL
AGKZLYT HDH

LdM
ADNFLYT HOM

¥..

£ ANZWETE 1 b ININETE

LI
AYTEQ MO

US 9,274,746 B2

Sheet 4 of 4

Mar. 1, 2016

U.S. Patent

¥ ANz

¥ B

HE

NI

ZANBNETE L ANGNSY

1414

i

&

3

R
YW

HATHYNYIN AQNZLYTY

&

¥

¥4
HEYL
AR M

&

LN
ADNSLYTHOM

FAETA
1NN
PUSE R

w8

i

! oow

{

US 9,274,746 B2

1

LATENCY HIDING TECHNIQUES FOR
MULTI-MODAL USER INTERFACES

TECHNICAL FIELD

The present invention relates to computer systems with
multi-modal user inputs and high response latencies.

BACKGROUND ART

Multi-modal user input systems support multiple different
user input modalities with different response delays, even
though user interaction occurs in real time and response
delays are undesirable. Low delay inputs such as keyboard,
mouse, pointing device, touch screen etc. respond to user
inputs without significant delay. On the other hand, high
latency inputs have a significant response latency after receiv-
ing a user input before providing a corresponding completed
response.

For example, high latency inputs such as an automatic
speech recognition input reflect a response latency that is
inherent in the speech recognition process which requires
some significant amount of audio (corresponding to several
words) before being able to produce recognition text that
matches the input speech with high degree of probability. In
addition, a user input may also be associated with a remote
server having a response latency that reflects data transfer
delays occurring over a computer network. For example, a
speech recognition process may need to send the input speech
audio over a computer network to a remote server where the
speech recognition engine resides, and the corresponding
recognition text output may need to be sent back to the local
client that displays the user interface to the user. The respon-
siveness of a multi-modal user input system is usually con-
trolled by the input with the highest response latency.

The effects of response latencies can be minimized to some
degree, but they cannot be entirely eliminated due to algorith-
mic limitations in the speech recognition process and physi-
cal limitations on computer network speed. Still, it is very
desirable to minimize the effects of response latencies for the
user.

In a real time speech recognition arrangement, the user
effects associated with response latencies are two-fold. First,
the user has no clear picture of the current state of the system.
If an utterance has been spoken, but the recognized text has
not yet appeared on the user interface, the system presents an
undefined state to the user. For all the user knows, the system
may have failed to record the audio, the network connection
may have been interrupted in a server-based speech recogni-
tion system, the speech recognition engine may have failed to
produce output text, or there may be a delay and results may
be produced eventually.

In addition, the user speaker cannot continue with work-
flow tasks until the results from the pending input utterance
have been completely processed and the user interface has
been updated. For example, if a user has dictated text for a
specific location in a document or form, and wants to dictate
more additional text at a different location or form field, this
is usually not possible until the recognition text from the first
dictation has been inserted into the document.

In some cases, the waiting time caused by response latency
simply must be accepted. For example, if the speaker dictates
into a search field and wants to act on the search results, no
action is possible until the results have been presented. On the
other hand, maximizing the duration of a single workflow
task can minimize some response latency effects. For
example, response latency effects are reduced if the user can

10

15

20

25

30

35

40

45

50

55

60

65

2

dictate a long document in one extended passage rather than
waiting for each individual sentence to be displayed before
dictating the next sentence. This suggests a “batch process-
ing” work style that may not be desirable in highly interactive
multi-modal applications that allow a mix of latency-encum-
bered input modes such as speech recognition, and low delay
input modes that can be processed immediately in real time
such as touch, mouse, or keyboard input.

SUMMARY

Embodiments of the present invention are directed to a
multi-modal user interface that hides response latency delays.
A graphical user interface (GUI) supports different user input
modalities including low delay inputs which respond to user
inputs without significant delay, and high latency inputs
which have a significant response latency after receiving a
user input before providing a corresponding completed
response. The GUI accepts user inputs in a sequence of mixed
input modalities independently of response latencies without
waiting for responses to high latency inputs, and responds to
each user input in the sequence as if each preceding user input
in the sequence had been performed without response laten-
cies.

The high latency inputs may include an automatic speech
recognition input having a response latency reflecting speech
recognition processing. In addition or alternatively, a high
latency input may include an input associated with a remote
server having a response latency reflecting data transfer
delays occurring over a computer network. There may be a
merge process that provides completed responses to the GUI
after the response latency according to deterministic rules.
Operation of the GUI may include use of a data model process
for managing the sequence of user inputs. The data model
process may run on a remote server, and/or perform user
inputs in the sequence in a correct time sequence order.

Embodiments of the present invention also include a cor-
responding method of operating multi-modal user interface.
A graphical user interface (GUI) is provided that supports
different user input modalities including low delay inputs
which respond to user inputs without significant delay, and
high latency inputs which have a significant response latency
after receiving a user input before providing a corresponding
completed response. User inputs to GUI elements are
accepted in a sequence of mixed input modalities indepen-
dently of response latencies without waiting for responses to
high latency inputs. Each user input in the sequence is
responded to as if each preceding user input in the sequence
had been performed without response latencies.

In further specific such embodiments, the high latency
inputs may include an automatic speech recognition input
having a response latency reflecting speech recognition pro-
cessing. In addition or alternatively, a high latency input may
include an input associated with a remote server having a
response latency reflecting data transfer delays occurring
over a computer network. There may be a merge process that
provides completed responses to the GUI after the response
latency according to deterministic rules. Operation of the
GUI may include use of a data model process for managing
the sequence of user inputs. The data model process may run
onaremote server, and/or perform user inputs in the sequence
in a correct time sequence order.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a mixed latency multi-modal
graphical user interface (GUI) according to one embodiment
of the present invention.

US 9,274,746 B2

3

FIG. 2 shows various functional blocks in a multi-modal
GUI system according to an embodiment of the present
invention.

FIG. 3 shows various functional blocks in a multi-modal
GUI system using a latency controller arrangement.

FIG. 4 shows various functional blocks in a multi-modal
GUI system using a data model arrangement.

DETAILED DESCRIPTION

In one aspect, embodiments of the present invention mini-
mize the effects of response latencies in multi-modal user
input systems with increased responsiveness to the user as
well as valuable user feedback.

FIG. 1 shows an example of a mixed latency multi-modal
graphical user interface (GUI) 100 according to one specific
embodiment of the present invention. The GUI 100 shows a
medical record form having multiple input fields which can
be accessed and filled using different user input modalities
including low delay inputs such as a keyboard, mouse, point-
ing device etc. which respond to user inputs without signifi-
cant delay, and also a high latency speech recognition input
which has a significant response latency after receiving a user
input before providing a corresponding completed response.

Inthe GUI 100 shown in FIG. 1, the system input focus was
first positioned at an initial position by one of the user input
controls (keyboard, mouse, speech recognition, etc.)—in this
case, a form field for “reason for admission.” The user then
provided an initial speech input for that initial form field
position, the recognition of which required some meaningful
time. Before the first input result is displayed, the user trig-
gered a screen navigation command via the keyboard to direct
the next speech input into a subsequent position in another
section or field of the current document—in this case the
document form field for “Impression.” The user then pro-
vided a subsequent speech input for the second position of the
impression field.

GUI 100 provides a distinctive interim indication pending
result icon 101 at the initial position that allows the user to
understand that processing of the initial speech input has
started. In the embodiment shown, the GUI 100 also displays
preliminary indication of the most likely recognition result
for the initial speech input: “This is a test dictation,” which
also may be highlighted, for example, in a distinctive font or
text color. In other embodiments, interim indication may be
provided in other forms such as a distinctive frame, cursor,
other highlighting, etc. The subsequent position impression
field also has an interim indication marking in the form a
pending navigation request icon 102 showing where the user
clicked with the keyboard to enter a screen navigation com-
mand and showing the new input focus position where the
next speech input will be inserted after the initial speech input
results have been inserted into the field for the initial position.
In other embodiments, interim indication of pending naviga-
tion requests may come in other specific forms (e.g., light
gray cursor, frame around input field to become active, etc.)
The impression field in GUI 100 also has a progress indica-
tion bar 103 indicating that speech input data is being col-
lected and processed for the next speech input.

Keyboard typing text input at a location where there is a
pending latency delayed result from an utterance that has not
yet been processed by speech recognition could also be indi-
cated, for example, by using a different font/color. Similarly,
checking of a check box could be set to a distinctive interim
indication color to indicate that the final result may be
changed by a still pending user input—for example, the
checkbox might need to be removed because delayed results

10

15

20

25

30

35

40

45

50

55

60

65

4

cause a restructuring of the GUI. In some embodiments, a
successfully posted document workflow command (such as.
“send report”) may trigger an audible interim indication such
as a beep.

Oncerecognition of the initial speech input is complete, the
corresponding recognized text is displayed on the GUI 100 at
the initial position and the distinctive marking of the interim
indication is removed for the initial position and the initial
recognition result. Then later, recognition of the subsequent
speech input finishes, the corresponding recognized text is
displayed on the GUI at the second subsequent position and
the distinctive marking of the interim indication is removed
for the subsequent position and the subsequent recognition
result. Once all pending high latency tasks have been pro-
cessed, the system finalizes execution of the user request.
Since this amount of time is a major contributor to the user’s
subjective experience of system responsiveness, this
improves end user acceptance of the system.

One kind of feedback provided by embodiments of the
present invention mitigates the effects on the end user of
response latencies in the specific form of feedback on pend-
ing responses/results. For example, pending speech recogni-
tion results may be visualized by an indication that the speech
recognition engine is currently processing results, by high-
lighting the GUI elements such as form fields and other text
boxes where completed results still remain to be inserted,
and/or by inserting an icon at the location where the pending
results will be inserted. Pending responses/results from long-
running tasks can be visualized by an indication at the control
element that is used to trigger the task (such as a button or
menu entry) to show that the task has been triggered and that
results will be provided presently. In addition or alternatively,
there may be an indication at the GUI elements to show where
the results will be inserted presently.

Another type of user feedback provided by embodiments
of the present invention is known as optimistic or predictive
execution feedback. For user inputs that depend on pending
results or that may be invalidated by pending commands,
predictive execution feedback provides a prediction of the
most likely future completed result and gives this as imme-
diate feedback to the user. Conventional GUIs do not typi-
cally provide feedback on predictive execution. Some appli-
cations allow a user to start multiple long-running tasks in
parallel (for example, opening several web pages in different
browser tabs), but existing applications are not known that
allow an arbitrary mix of delayed and immediate operations
where there is user feedback indication for immediate opera-
tions that may be influenced by the result of delayed opera-
tions.

In the field of speech recognition applications there is a
feature known as “recognition previews” that displays pre-
liminary recognition results to the user to indicate that the
system is running and working towards a final recognition
result. But speech recognition systems are not known that
combine this with previews on the effect of immediate modal-
ity inputs such as editing via keyboard.

Progress indicators are sometimes used in GUI design, but
usually these are restricted to whole applications or entire
windows. For example, an application that starts a long-run-
ning task will often display an hourglass or a progress bar. A
web browser loading a web page typically displays some
progress indicator in a status bar and will incrementally build
up the page as data arrives. But applications are not known
that provide fine grained progress indicators embedded into
individual GUI elements as described herein, or that provide

US 9,274,746 B2

5

progress indicators that encompass multiple user interactions
such as trigger a task—navigate in the GUl—trigger another
task.

Known high level speech input frameworks—such as
VoiceXML, SALT, and XHTML+Voice—do not deal with
response latency at all. Rather, it is expected that the form
fields are filled in a dialog-style fashion where the user has to
wait for an utterance to be processed before the client contin-
ues with the dialog (the exception being the <sync> element
of XHTML-Voice which allows for a certain asynchronicity,
but does not specify how conflicts between voice and key-
board input should be resolved). Known low level speech
APIs—such as Microsoft’s SAPI, Nuance’s DNS SDK and
Nuance’s SpeechMagic SDK—also do not deal with
response latencies and provide no support for multi-modal
input (with the exception of SpeechMagic SDK’s “Queue-
NonVocalCommand”, which only supports application of
events synchronized with audio). Known multi-modal input
standards—such as W3C “Multimodal Architecture and
Interfaces™” (draft) and various other systems based on so-
called “late fusion”—also do not deal with response latency
issues and instead assume that all input events are processed
in time order.

Known MVC-based GUI frameworks do not explicitly
deal with response latencies between view/controller and
model; rather they are usually designed in such a way that
model updates are expected to result in an immediate, syn-
chronous view update and actions on the controller result in
an immediate, synchronous model update. For example,
Microsoft Foundation Classes Document-View architecture
employs a synchronous method, CDocument::UpdateAll-
Views, to update views after the model (=CDocument) has
changed. Java Swing does not provide any specific mecha-
nism for merging view updates with asynchronous changes to
the model. And web-based MVC frameworks such as ASP-
NET MVC and J2EE assume that all client requests
(=changes on the view) are executed synchronously—the
user has to wait until the result page is displayed in the
browser.

FIG. 2 shows various functional blocks in a multi-modal
GUI system 200 according to an embodiment of the present
invention which supports various mixed latency input
modalities. Here the user 201 can employ one or more low
delay inputs 202 such as a keyboard, mouse, pointing device
etc. which correspond to input events that respond without
significant delay. The user 201 also has available one or more
a high latency inputs 203 such as a speech recognition input
which has a significant response latency after receiving a user
input before providing a corresponding completed response.
The user inputs control a system GUI 204 with multiple
various control elements 205 such as menus, buttons, input
fields, etc. that can be activated by any of the input modalities.
Any of these control elements 205 also may trigger a high
latency task 206 such as data base access or access to web
services that will produce results in a delayed fashion. Any of
the input modalities or task results also may require addi-
tional data present in the GUI or may modify the GUT in such
a manner that GUI elements 205 may be added, removed, or
modified.

For example, when the user interacts with a high latency
input 203 such as a speech recognition input, the audio is
processed by the GUI system 200 and only when the recog-
nition process is at least partially computed can results be
applied to GUI 204 where they become visible to the user.
When the user enters text via a high latency input 203 such as
a speech recognition input which does not immediately
appear in the GUI 204, and then immediately changes the

20

35

40

45

55

6

GUI 204 via a low delay input 202 (for example, by clicking
into a different form field or editing text in a document via
keyboard), then the delayed text result from the original
speech input to the high latency input 203 should be inserted
at the location where the cursor was when the user originally
dictated it, not at the current cursor location. Similarly, when
the user speaks a voice command such as “next field,” the
command processing via the high latency input 203 is delayed
by response latency, so if the user decides to change the cursor
location immediately via a low delay input 202 (for example,
by touching a field), then a delayed arrival of the “next field”
result should not cause the cursor to move, because this com-
mand has been overridden by the previous user action. The
user should be allowed to issue an input event via a high
latency input 203 and immediately afterwards, without wait-
ing for the delayed result enter another input event via a low
delay input 202. Typically the operating system manages
interactions between the GUI 204 and the low delay input
202, and between the GUI 204 and the user 201.

FIG. 3 shows various functional blocks in a multi-modal
GUI system 300 using a latency manager 301 which manages
the interactions between the user 201 and the high latency
input 203, and also between the GUI 204 and the high latency
input 203 and high latency task 206. It is the latency manager
301 thatis responsible for applying delayed results to the GUI
204 so that its end state is equivalent to the state that would
have been achieved if there had been no out of order inputs.
And while FIG. 3 shows the latency manager 301 as contain-
ing the one or more high latency inputs 203 and one or more
high latency tasks 206, that is not a particular requirement; for
example, in other embodiments the latency manager 301 may
be separate from and interposed between the GUI 204 and the
high latency inputs 203 and/or the high latency tasks 206.

FIG. 4 shows various functional blocks in a multi-modal
GUI system 400 using a data model 401 arrangement for
handling the specific case of server-based speech recognition.
The data model 401 is “close” to the high latency input 203
(i.e. the speech recognizer) so that there is no significant
response latency in the communication between the two. The
data model 401 receives all user inputs from both the high
latency input 203 and low delay input 202 to minimize latency
effects due to network communications. Based on the state of
the data model 401, the latency manager 301 manages all the
system interactions as described above. And again, While
FIG. 4 shows the latency manager 301 as containing the data
model 401, the one or more high latency inputs 203, and the
one or more high latency tasks 206, that is not a particular
requirement; for example, in other embodiments the latency
manager 301 and/or the data model 401 may be separate from
each other, and/or interposed between the GUI 204 and the
high latency inputs 203 and/or the high latency tasks 206.
Note that in the arrangement shown in FIG. 3, a data model
may be implicitly or explicitly implemented within the GUI
204.

The execution flow in such systems may be such that when
the user interacts with the system, all activities (editing,
speech recognition of individual utterances, touch or mouse
click events) are put into a single, combined event queue
within the latency manager 301 in the order that the user
executes them. Events that may suffer from response latency
(e.g., speech recognition and other server-based activities)
are enhanced by the latency manager 301 with sufficient
context to allow later merging of results. Events that do not
suffer from response latency (editing, touch, mouse click) are
immediately applied by the latency manager 301 to the GUI
204 (typically, either automatically by the operating system
and/or GUI framework). Events are applied to the data model

US 9,274,746 B2

7

401 only in time order. This may cause the view presented by
the GUI 204 and the data model 401 to get out of sync from
each other.

To process events that suffer from response latency in a
server-based speech recognition embodiment, when delayed
results arrive from the high latency input 203 they are first
applied to the data model 401. Since events are only applied
to the data model 401 in time order, the event can be applied
to the current model state without special processing. For
server-based speech recognition, after the event has been
applied to the data model 401, it can be forwarded to the GUI
204 enhanced with sufficient model context to allow merging
with the current view. In both server-based and client-based
speech recognition, the view of the GUI 204 may be out of
sync with the data model 401 due to immediately-applied
events, so the event may need to be merged with the current
view state.

To process events that are executed immediately, the event
is first applied to the view of the GUI 204. The view state
before event application and information about which events
have already been applied to the view and which are still
pending is stored. For server-based speech recognition, the
event may be forwarded to the data model 401 enhanced with
the information stored in the previous step. As noted in the
previous paragraph, events are not applied to the data model
401 immediately but rather in time order. Therefore, when the
event is applied to the data model 401 the model state may
differ from the view state against which the event has been
applied because in the meantime one or more pending
latency-encumbered events may have been applied to the data
model 401 such that the event needs to be merged with the
current model state.

In a specific client-server speech recognition application,
the response latencies should be hidden as much as possible
so that the user does not need to wait for a result. For example,
the current event focus may be in some text box 1 when the
user dictates “boo,” taps text box 2 without waiting for first
result to be inserted, and dictates “bar”” After some time,
“boo” is inserted in text box 1 and “bar” is inserted in text box
2. Orifthe current input focus is in text box 1, the user dictates
“boo,” dictates “next field” without waiting for result to be
inserted, and then dictates “bar,” after some time, “boo” is
inserted in text box 1 and “bar” is inserted in text box 2. There
should be no unpleasant surprises for the user. System behav-
ior should be deterministic even in the presence of response
latency, and optimally the final text should be independent of
response latency. Determinism also should be based on
simple rules, and optimally a multi-modal input sequence—
mixing utterances and manual GUI changes—should lead to
the same result as an equivalent uni-modal sequence. There
also should be an immediate transition from idle to recording,
so that the user can press a “record” button and start talking
immediately, no audio will ever be lost and the user does not
need to wait for the system to give feedback that recording is
on. Technical frame conditions should also be considered
such as to minimize battery usage and hide potentially high
network latency from the user.

Taking a general run time view of dictation in a specific
embodiment, before a new utterance is started, all GUI
changes since the last utterance may be sent to the server and
enqueued. When an utterance starts, it also is enqueued so that
the application data set can be updated with manual edits and
recognition results in the proper order (the user-perceived
sequence). For recognition to start the textual context from
the time when the utterance was started is needed, therefore,
all changes up to the start of the utterance should be applied to
the application data set first. A GUI change at the head of the
queue can be applied immediately to the application data set.

20

25

40

45

55

8

A recognition-triggered change should block processing until
the recognition result is available. GUI changes do notneed to
be returned to the client—they have already been applied to
the GUI. Recognition results may be forwarded to the client
where they can be applied to the GUI. In cases where the GUI
and the application data set may get out of sync (for example,
when the user modifies text without waiting for pending
utterances to be processed) any pending recognitions may
need to be aborted and a synchronization may need to be
forced.

Considering the specific situation of field navigation by
speech input, the user may synchronize with the recognition
process. In this scenario, all changes (triggered by the recog-
nizer) can be applied first to the application data set on the
server and then to the GUI on the client. Note that GUI
changes may only need to be sent to the server if they were
triggered by a user action—GUI changes due to recognition
results have already been applied to the data model as
explained above. Furthermore, they only need to be sent at the
beginning of an utterance to ensure that the recognizer has up
to date textual context information.

In another case of field navigation by voice, the user may
not wait for recognition to complete, a maximal latency sce-
nario. Then all changes (triggered by the recognizer) can be
applied first to the application data set on the server and then
to the GUI on the client (i.e. it is not different in this respect to
the fully synchronous variant). Here the effect of response
latency on the server only causes the GUI updates to occur
later in time. Both update events and audio are queued on the
server for subsequent processing. This buffering would allow
the user to continue dictation without waiting for intermedi-
ate results.

Inthe case offield navigation by touch input where the user
does not wait for recognition to complete, again there may be
maximal latency delay. So for example, some event #3 such as
a click in text box B may be applied to a GUI in some state #1
before the result from a previous recognition event #2 (“utter-
ance A”) is applied. This would create a situation of two
merge operations, where recognition event #2 needs to be
merged on the client into a GUI that has events #1 and #3
applied, and also GUI event #3 needs to be merged on the
server into an application data set that has events #1 and #2
applied to it. In this example, both merges may be trivial
because the changes caused by the events are well separated,
but non-trivial merges would be necessary if text in a single
text box were modified by unsynchronized dictation and edit-
ing events (e.g. select, overdictate, then edit the words cov-
ered by the selection before the result from the overdictation
is applied to the text).

It also may be useful in a specific client-server speech
recognition application to define a simple language for mod-
elling the effect of response latency delays on the final client
side text. It can be assumed that the delay will be mainly
caused by the time for recognition processing of input speech
utterances which will be greater than the time of communi-
cation latency. This assumption allows that both server and
client might evaluate delay at a given point in time, since the
delay is known also on server side. If this assumption is not
valid, communication latency may be modeled in an extended
way.

For performing a non-speech activity, the positive number
of pending utterances can be shown in superscript. If there is
no delay, no superscript is necessary. Non-speech activities
(e.g., Ul click) are assumed to have no delay. Since the order
of utterances or the order of non-speech activities cannot be
changed, the delay superscript often has relevance only if

US 9,274,746 B2

9

pending utterances are followed by non-speech activities. It
may also be assumed that the application has form fields that
can be indexed by field identifier subscripts.

An input utterance may be either dictation or field naviga-
tion. Dictation can include any utterance that changes the text
context such as text insertion (“normal” dictation), text dele-
tion (e.g. “scratch that”), and text selection (e.g. “select pre-
vious sentence”). Field navigation refers to a focus change to
the specified field. If the field is a text box, the insertion point
is implicitly placed at the end of the field. If the field is a
special element such as a button, the “navigation” implies
activating the element, resulting e.g. in a “button click”. Any
general (non-editing-related) voice command can be
regarded as field navigation to a virtual button. So, for
example, for a given input utterance, U, dictation into a field
1 is represented as D,, and navigation into a field j is repre-
sented as F,. Relative navigation (e.g. Next (Previous) Field
(F,, or F,_)) can be treated as a special variant of field navi-
gation. For dictation, the subscript denotes the field that has
the focus at the start of the utterance. For field navigation, the
subscript denotes the field that is (will be) the target of the
navigation.

Non-speech events also occur such as GUI update when
starting a new utterance, abort, user click or type. Notation for
a non-speech event NS can refer to starting in field i: ST,,
abort: AB, click into field j: C,, editing in field i: E,. Bditing
implies a “click into field” (focus change) and covers the
activities such as typing (=adding, changing, or deleting char-
acters—ET) and changing the selection (=positioning the
cursor at a specific text position or selecting several charac-
ters—ES).

During recognition, R, the client user is either speaking
Ultterance), clicking C(lick), or editing E(dit). Navigation is
either field navigation or click into a field, N,: F,IC,. A recog-
nition session, RS, is a sequence of recognition events after
starting a GUI update, which ends when all pending utter-
ances have been applied to the client GUI or at an abort event:
RS: ST R*[AB]. Apart from the start event ST, GUI updates
need to be sent at the start of any utterance that was preceded
by a C or E event.

Client activities can be modelled as recognition session
sentences, and client results modelled by rewriting the activi-
ties via rules. This may usefully be illustrated with a number
of examples for recognition session sentences and expected
results. Note that these examples are only interesting in the
presence of response latency. If there is no latency, the
sequence of events in the recognition session exactly corre-
sponds to the expected result.

For example, consider the case where a user dictates into a
form field A, and then activates (click) another form field B
and dictates further. The expected operation should be that
first utterance results are placed into field A and the second
utterance into field B; i.e. text is always inserted at the place
where the cursor was when the utterance was started. To
realize this, the client sends the cursor surroundings and
focussed field at the start of an utterance, and the server sends
target field and position with each text result back to the client
for insertion into a given field at given position. Thus:

Recognition session: ST, D,'C,'D,>

Result: ST,D,C,D,

Note that the first utterance is expected to go into field A even
though it will arrive at the client only after the click into field
B as indicated by the latency delay superscript “!”” in symbol
“Cbl”'

Also consider the case where a client user dictates into a
form field A, utters a navigation command and then dictates
further. Here the expected operation is as in the previous case.

10

15

20

25

30

35

40

45

50

55

60

65

10

To realize this in an optimal way minimizing client-server
communications, the remote server needs to know the struc-
ture of the document (client sends surroundings with each
utterance) so that the server can immediately apply the navi-
gation command to the data model, then there will be no
blocking of recognition and the utterance in field B is evalu-
ated with field B surroundings. If the server does notknow the
structure of the document, then there will be blocking of
recognition until the client sends the new surroundings in
field B. Thus:

Recognition session: ST D 'F,*D 2

Result: ST, D, F,D,

Note that the expected result is just as it would be if there were
no response latency.

For a similar case with field navigation by touch, the same
result as in the previous example is expected. That is response
latency should not matter even if multi-modal input is used,
and the text of the first utterance should go into the first field
even though the result arrives at the client only after the click
into the second field.

Recognition session: ST, D,'C,'D,?

Result: ST ,D,C,D,

Another case would be when the user clicks a text box A,
speaks “utterance A,” clicks text box B, speaks “next field,”
and speaks utterance C:

Recognition session: ST,D,'C,'F,,*D,>

Result: ST,D,F_D,

Note that the click followed by navigation is collapsed into
just a single focus change.

Or a user could click a text box A, speak some “utterance
A,” speak “next field,” click text box C, and speak utterance C:

Recognition session: ST, D, 'F, *C_*D >

Result: ST,D,C.D,

Note that the navigation followed by a click is collapsed into
just a single click.

In the case of abort rules, an abort releases any following
pending utterances:

A.(R1,...,Rk)AB"—[Er, .. ., Es] [Ct)//where Er, . . .,

Es are all edits and Ct is the last click in {R1 ... Rk}
Thus, an abort does not undo any edits or clicks, it only clears
all pending utterances.

Navigation rules can also be useful, for example, a
sequence of (absolute or relative) navigation events is equiva-
lent to the last event. So a combination of navigation com-
mands becomes:

Nakok(+l)_>Nb
And dictation goes into the field that is focused by most recent
navigation event, even if the dictation was uttered in a differ-
ent field. So the navigation becomes:

N,“CUN D, ' —N,N_D,.

Some additional examples of navigation rules include:

Click is applied in the original order: D *C,D,*"'—

D.C,D,

Navigation is applied in the original order: D
Fbk+lDak+2_> DanDb

Last absolute navigation is applied: D *C,*F **'D,*2—
DGFCDC

Last absolute navigation is applied: D F,C,*D,—D,C,D,

Navigation is relative to position at start of utterance:
D,*C,'F,,*'D,**=DF,.D,,
The examples may be less trivial than expected since the rules
preserve the order of the multi-modal event sequence. If the
client GUI order would take precedence, undesired behaviour
could result such as the click being applied before delayed
dictation results:

DC,'D,*'-C,D,D,

US 9,274,746 B2

11

Editing rules can also be implemented. Editing events
come at different levels of complexity. For example, editing
may occur in text boxes for which no dictations are pending.
That should not be a problem since the client can apply the
dictation events without restriction:

(R, ...ROE/—E,R,...R)
withinotin1 ...k. But note that the client cannot determine
the condition “i notin 1 . . . K~ a-priori since some of the
recognition events may be navigation. But the client can
determine whether a field was edited when the result for a
certain field arrives.

Or editing may occur at a character position that is greater
than the character position(s) touched by the pending dicta-
tions:

(R, ...ROE/—E,R,...R)
withiin 1 ...k so that the edit position is greater than the
position touched by R,. For the application of dictation events
after typing there should not be any particular problem, the
client can apply the dictation events without restriction by
making sure that the selection is not moved by the text updates
to avoid disturbing the user’s editing. Starting a new dictation
after a selection has changed is still possible, but the selection
cannot be communicated as an absolute position, that will
change as the pending dictation is applied at a smaller char-
acter position.

Editing may occur at a character position that is smaller
than the character position(s) touched by the pending dicta-
tions:

R, ...ROE/=E,R,...R)
withiin 1 ...k and the edit position less than the position
touched by Application of dictation events after typing is
allowed, but the dictation events cannot be applied at an
absolute position, that will change if the editing changes the #
of characters in the field. Starting a new dictation after selec-
tion changed is not a problem because the absolute position
and character surroundings for the new dictation will not
change as pending dictation events are applied.

Editing also may occur at a character position that overlaps
with the character position(s) touched by the pending dicta-
tions. For such circumstances, there does not appear to be an
obvious solution, the user’s intentions cannot be determined
and even the user may not even have considered what should
happen. One possible approach would be to place the result at
some given position in the field such as the current location of
the insertion point or a canonical end of field insertion posi-
tion. In this way neither editing nor dictation are lost, but the
client must communicate the change to the server and the
problem is compounded, especially if multiple utterances are
pending. In addition, the text formatting may not match the
cursor surroundings. Alternatively, the system could undo the
editing and replace the contents of the field with the server’s
view. This would not lose the dictation and immediately
brings the client and the server back in sync, but the editing is
lost and the server must always provide the full text of the
field, otherwise synchronicity cannot be recreated. Another
possible solution to this problem would be to undo the dicta-
tion and not insert the dictation result at all in the field. This
way, the editing is not lost, but the dictation is, so changes
must be communicated to the server, compounding the prob-
lem, especially if multiple utterances are pending.

For communication response latencies where there is a
delay caused by slow communication, the modelling on the
client and the modelling on server should not be the same, so
that the recognition session sentences are different on the
client and on the server. Client actions would change the delay
subscript when seen from the perspective of the server. For

10

15

20

25

30

35

40

45

50

55

60

65

12

example, if client server communication is slow, sending
client events to the server might have delays:

ST,D,C,'D,?

Moreover, some problems can be detected only on the client,
so that the client should be the only master.

Embodiments of the invention may be implemented in
whole or in part in any conventional computer programming
language. For example, preferred embodiments may be
implemented in a procedural programming language (e.g.,
“C”) or an object oriented programming language (e.g.,
“C++7, “C#7). Alternative embodiments of the invention may
be implemented as pre-programmed hardware elements,
other related components, or as a combination of hardware
and software components.

Embodiments can be implemented in whole or in part as a
computer program product for use with a computer system.
Such implementation may include a series of computer
instructions fixed either on a tangible medium, such as a
computer readable medium (e.g., a diskette, CD-ROM,
ROM, or fixed disk) or transmittable to a computer system,
via a modem or other interface device, such as a communi-
cations adapter connected to a network over a medium. The
medium may be either a tangible medium (e.g., optical or
analog communications lines) or a medium implemented
with wireless techniques (e.g., microwave, infrared or other
transmission techniques). The series of computer instructions
embodies all or part of the functionality previously described
herein with respect to the system. Those skilled in the art
should appreciate that such computer instructions can be
written in a number of programming languages for use with
many computer architectures or operating systems. Further-
more, such instructions may be stored in any memory device,
such as semiconductor, magnetic, optical or other memory
devices, and may be transmitted using any communications
technology, such as optical, infrared, microwave, or other
transmission technologies. Itis expected that such a computer
program product may be distributed as a removable medium
with accompanying printed or electronic documentation
(e.g., shrink wrapped software), preloaded with a computer
system (e.g., on system ROM or fixed disk), or distributed
from a server or electronic bulletin board over the network
(e.g., the Internet or World Wide Web). Of course, some
embodiments of the invention may be implemented as a com-
bination of both software (e.g., a computer program product)
and hardware. Still other embodiments of the invention are
implemented as entirely hardware, or entirely software (e.g.,
a computer program product).

Although various exemplary embodiments of the invention
have been disclosed, it should be apparent to those skilled in
the art that various changes and modifications can be made
which will achieve some of the advantages of the invention
without departing from the true scope of the invention.

What is claimed:
1. A computer system for displaying a multi-modal user
interface comprising:

a display; and

aprocessor configured to display on the display a graphical
user interface (GUI) supporting a plurality of different
user input modalities including:

i. one or more low delay input modalities, each of which
responds to a low delay user input with a low delay, and

ii. one or more high latency input modalities, each of which
has ahigh response latency after receiving a high latency
user input before providing a completed response to the
high latency user input;

US 9,274,746 B2

13

wherein the computer system is configured to:

accept, via the GUI, low delay and high latency user inputs
in a sequence of mixed input modalities independently
of response latencies without waiting for responses to
high latency inputs as if each preceding user input in the
sequence had been performed without response laten-
cies;

after receiving a first high latency user input followed by a

subsequent low delay user input in the sequence of
mixed input modalities, alter an appearance of a display
corresponding to the low delay user input to indicate a
possible change in a final result for the subsequent low
delay user input pending a response from the first high
latency user input; and

accept user input for a second high latency input modality

prior to providing a completed response to the first high
latency user input.

2. A computer system according to claim 1, wherein the
one or more high latency input modalities include an auto-
matic speech recognition input modality having a response
latency reflecting speech recognition processing.

3. A computer system according to claim 1, wherein the
one or more high latency input modalities include delays
associated with a remote server having a transfer response
latency reflecting data transfer delays occurring over a com-
puter network.

4. A computer system according to claim 3, wherein a
merge process provides completed responses to the GUI after
the transfer response latency according to deterministic rules.

5. A computer system according to claim 3, wherein opera-
tion of the GUI includes use of a data model process for
managing the sequence of user inputs.

6. A computer system according to claim 5, wherein the
data model process runs on a remote server.

7. A computer system according to claim 5, wherein the
data model process performs user inputs in the sequence in a
correct time sequence order.

8. A method of operating multi-modal user interface com-
prising:

providing a graphical user interface (GUI) supporting a

plurality of different user input modalities including:

i. one or more low delay input modalities, each of which

responds to a low delay user input with a low delay, and

ii. one or more high latency input modalities, each of which

has a high response latency after receiving a high latency
user input before providing a completed response to the
high latency user input;

accepting low delay and high latency user inputs to GUI

elements in a sequence of mixed input modalities inde-
pendently of response latencies without waiting for
responses to high latency inputs as if each preceding user
input in the sequence had been performed without
response latencies;

after receiving a first high latency user input followed by a

subsequent low delay user input in the sequence of
mixed input modalities, altering an appearance ofa GUI
element corresponding to the low delay user input to
indicate a possible change in a final result for the subse-
quent low delay user input pending a response from the
first high latency user input;

and

accepting user input for a second high latency input modal-

ity in the sequence prior to providing a completed
response to the first high latency user input.

25

40

45

50

55

60

14

9. A method according to claim 8, wherein the one or more
high latency input modalities include an automatic speech
recognition input having a response latency reflecting speech
recognition processing.

10. A method according to claim 8, wherein the one or
more high latency input modalities include delays associated
with a remote server having a transfer response latency
reflecting data transfer delays occurring over a computer net-
work.

11. A method according to claim 10, wherein a merge
process provides completed responses to the GUI after the
transfer response latency according to deterministic rules.

12. A method according to claim 10, wherein operation of
the GUI includes use of a data model process for managing
the sequence of user inputs.

13. A method according to claim 12, wherein the data
model process runs on a remote server.

14. A method according to claim 12, wherein the data
model process performs user inputs in the sequence in a
correct time sequence order.

15. A non-transitory data-storage device encoded with
instructions that, when executed by at least one computing
device, adapt the at least one computing device to execute acts
of:

providing a graphical user interface (GUI) supporting a

plurality of different user input modalities including:

i. one or more low delay input modalities, each of which

responds to a low delay user input with a low delay, and

ii. one or more high latency input modalities, each of which

has ahigh response latency after receiving a high latency
user input before providing a completed response to the
high latency user input;

accepting low delay and high latency user inputs to GUI

elements in a sequence of mixed input modalities inde-
pendently of response latencies without waiting for
responses to high latency inputs as if each preceding user
input in the sequence had been performed without
response latencies;

after receiving a first high latency user input followed by a

subsequent low delay user input in the sequence of
mixed input modalities, altering an appearance ofa GUI
element corresponding to the low delay user input to
indicate a possible change in a final result for the subse-
quent low delay user input pending a response from the
first high latency user input;

and

accepting user input for a second high latency input modal-

ity in the sequence prior to providing a completed
response to the first high latency user input.

16. The non-transitory data-storage device of claim 15,
wherein the one or more high latency input modalities include
an automatic speech recognition input having a response
latency reflecting speech recognition processing.

17. The non-transitory data-storage device of claim 15,
wherein operation of the GUI includes use of a data model
process for managing the sequence of user inputs.

18. The non-transitory data-storage device of claim 17,
wherein the instructions include a merge process that pro-
vides completed responses to the GUI after a transfer
response latency according to deterministic rules, wherein the
transfer response latency is associated with data transfer
delays over a computer network.

#* #* #* #* #*

